

GCE

Mathematics

Unit 4725: Further Pure Mathematics 1

Advanced Subsidiary GCE

Mark Scheme for June 2018

ange of Court Con

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

Mark Scheme

Annotations and abbreviations

4725

Annotation in scoris	Meaning				
✓and ×					
BOD	Benefit of doubt				
FT	Follow through				
ISW	Ignore subsequent working				
M0, M1	Method mark awarded 0, 1				
A0, A1	Accuracy mark awarded 0, 1				
B0, B1	Independent mark awarded 0, 1				
SC	Special case				
٨	Omission sign				
MR	Misread				
NGE	Not good enough				
Highlighting					
Other abbreviations in	Meaning				
mark scheme					
E1	Mark for explaining				
U1	Mark for correct units				
G1	Mark for a correct feature on a graph				
M1 dep*	Method mark dependent on a previous mark, indicated by *				
cao	Correct answer only				
oe	Or equivalent				
rot	Rounded or truncated				
soi	Seen or implied				
www	Without wrong working				
	Correct working only				
cwo	Correct working only				

Subject-specific Marking Instructions for GCE Mathematics Pure strand

A Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

C The following types of marks are available.

M

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- E The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

F Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.)

We are usually quite flexible about the accuracy to which the final answer is expressed and we do not penalise over-specification.

When a value is given in the paper

Only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case.

When a value is not given in the paper

Accept any answer that agrees with the correct value to 2 s.f.

ft should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination.

There is no penalty for using a wrong value for *g*. E marks will be lost except when results agree to the accuracy required in the question.

G Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working.

'Fresh starts' will not affect an earlier decision about a misread.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

- I If a graphical calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- J If in any case the scheme operates with considerable unfairness consult your Team Leader.

Question	Answer	Marks	Guidance
(i)	$\binom{25a-28b}{22}$	B1 B1	Each element correct
		[2]	
(ii)	$\begin{pmatrix} 21b & 42b \\ 2 & 12 \end{pmatrix}$		Obtain a 2×2 matrix
	(-9 -18)		Obtain correct answer
			N.B. maximum penalty -1 for missing matrix brackets
		M1	Attempt to express w in cartesian form
	$w = -3 + (3\sqrt{3})i$	A1	Obtain correct result, could be $6(-\frac{1}{2} + \frac{\sqrt{3}}{2}i)$
		M1	Multiply by conjugate of w
	$\frac{\sqrt{3}}{12} - \frac{5}{12}i$	A1A1	Obtain correct real and imaginary parts as exact values a.e.f. If answer written in form $\frac{a+ib}{c}$ allow A1 for correct numerator and A1 for correct denominator, OK if factor of 3 not removed.
		[5]	
(i)	$\frac{1}{d}\begin{pmatrix} 1 & 0\\ 0 & d \end{pmatrix}$	B1 B1 [2]	All elements correct, divide by determinant
(ii)	Stretch, parallel to x-axis scale factor d	B1 B1	Must be a stretch, otherwise B0 B0. Allow "in the x direction" but not "in the x-axis"
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[2]	
(iii)	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	M1 A1	Post multiply \mathbf{D} by (i) or pre multiply \mathbf{D} by a general 2×2 Obtain correct answer
	Rotation, 90° clockwise, centre O	B1 B1 [4]	Must be a rotation otherwise B0 B0, allow if centre O not mentioned, could be 270° anticlockwise SC Allow B1 B1 for correct description of their matrix, must be a single transformation
	(i) (ii) (ii)	(i) $\binom{25a - 28b}{22}$ (ii) $\binom{21b + 42b}{-9 - 18}$ $w = -3 + (3\sqrt{3})i$ (i) $\frac{\sqrt{3}}{12} - \frac{5}{12}i$ (i) $\frac{1}{d}\binom{1}{0}\frac{0}{d}$ (ii) Stretch, parallel to x-axis scale factor d	(i) $\binom{25a-28b}{22}$ B1 B1 (ii) $\binom{21b-42b}{-9-18}$ M1 $k=-3+(3\sqrt{3})i$ M1 $k=-3+(3\sqrt{3})i$ M1 $k=-3+(3\sqrt{3})i$ M1 A1A1 (i) $\frac{\sqrt{3}}{a}-\frac{5}{12}i$ A1A1 (i) $\frac{1}{a}\binom{1}{0}a$ B1 B1 (ii) Stretch, parallel to x-axis scale factor d (iii) Stretch, parallel to x-axis scale factor d (iii) Rotation, 90° clockwise, centre O (iii) Rotation, 90° clockwise, centre O (iii) B1 B1

	Question Answer		Monles	Guidance
			Marks	Guidance Control must be in 1 st and death and associate civilization and associate civilization and associate civilization.
4	(i)	Circle, centre (3, 4) radius 2	B1 B1	Centre must be in 1 st quadrant not crossing either axis, correct centre and radius clearly shown or stated
		Half line with $+$ ve slope, starting at $(3, 4)$,	B1 B1	(3,4)must be clearly shown, must be a half line extending outside circle otherwise B0 B0
		Vertical line, through (6, 0)	B1 B1	(6, 0) shown or equation $x = 6$ stated
		1		Treat each part independently, but if diagram not totally correct e.g. circle touches
			[6]	vertical line, penalty of -1 so $5/6$ only
		4i 2i 3 6		
	(ii)	Region outside L_1 ,	B1	Treat each part independently, but diagram must be totally correct to get 3/3
	(11)	to left of L_3 ,	B1	Treat each part macpendentry, but diagram must be totally correct to get 3/3
		between a horizontal line through $(3, 4)$ and L_2	B1	
		4i 2i 3 6	[3]	

C	uestion	Answer	Marks	Guidance
5	(i)	$4u^3 + 15u^2 + 20u + 10 = 0$	M1 M1 A2 [4]	Substitute and clear fractions Attempt to expand and attempt to simplify Obtain correct equation, A1 if only one error
	(ii)	Either $u = \frac{1}{x} - 1$ -2.5	B1 M1	Rearrangement seen or implied Use – (d/a) for their cubic, must include -ve Obtain correct answer a.e.f. ft their – d/a
	$\frac{1}{\alpha\beta\gamma} - \frac{\alpha + \beta + \gamma}{\alpha\beta\gamma} + \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} - 1$ -2.5	$\frac{1}{\alpha\beta\gamma} - \frac{\alpha+\beta+\gamma}{\alpha\beta\gamma} + \frac{\alpha\beta+\beta\gamma+\gamma\alpha}{\alpha\beta\gamma} - 1$	[3] B1 M1 A1	Expand and express in terms of symmetric functions of given cubic Use values from given cubic Obtain correct answer a.e.f.
6	(i)	$\frac{1}{4}n^{2}(n+1)^{2} + \frac{1}{6}n(n+1)(2n+1) - \frac{7}{2}n(n+1)$ $\frac{1}{12}n(n+1)(3n-8)(n+5)$	M1 A1 A1 M1 A1 [5]	Attempt to use sum/difference of 3 standard series Two terms correct 3^{rd} term correct Allow e.g. r for n at this stage Obtain factor of $n(n + 1)$ Obtain correct fully factorised answer, must be in terms of n Allow $\frac{1}{4}n(n+1)(n-\frac{8}{3})(n+5)$
	(ii)	$\sum_{r=1}^{n} (u_r - u_{r-1}) = u_n - u_0$ $u_n = \frac{1}{12} n(n+1)(3n-8)(n+5) + 5$	M1 DM1 A1ft [3]	Show cancelling in method of differences or state result Equate to their (i) Obtain correct answer

Q	uestion	Answer	Marks	Guidance
7	(i)		M1	Substitute $a + 3i$ into equation and start to simplify
		$a^2 - 7a + 10 + (5a - 21 + k)i = 0$	A1	Obtain correct LHS, all expanded but not necessarily simplified
			M1	Equate real part to 0 and solve for a
		a = 2 or 5	A1	Obtain both answers
		k = 11 or -4	M1	Substitute value(s) of a into imaginary part and solve for k
		a = 2 and $k = 11$	A1	Obtain both answers
			A1	Clearly reject solution involving –ve <i>k</i>
		Alternative for first 2 marks		
		$(2a-7)^2 - 25 + 10(2a-7)i = -16 + (14-4k)i$	M1	Use quadratic formula and rearrange and remove $\sqrt{}$
		$(2u-1)^{2}-23+10(2u-1)^{2}=-10+(14-4k)^{2}$ Or	A1	Obtain correct answer
			M1	Other root is $\beta = 7 - a - 2i$, use $\alpha\beta = 16 + ki$
		$7a-a^2+6+(21-5a)i=16+ki$	A1	Obtain correct result
			[7]	
	(ii)		M1	Use sum of roots (or product of roots)
		5-2i	A1	Obtain correct answer
			[2]	
		Alternative solution for (i) and (ii) combined		Other root is $x + iy$
		(1) 4114 (12) 40144114	M1	Use sum of roots and equate to $7 + i$
		y = -2 and a + x = 7	A1	Obtain correct equations
			M1	Use product of roots, with $y = -2$ and equate to $16 + ki$
		ax = 10 and $3x - 2a = k$	A1	Obtain correct equations
		$a^2 - 7a + 10 = 0$	M1	Eliminate x (or \hat{a})
			M1	Solve for a (or x)
		a = 2, x = 5, k = 11	A1`	Obtain correct answers
		a = 5, x = 2, k = -4	A1	Obtain correct answers
1		Other root is 5 – 2i	A1	Reject solution involving negative k
			[9]	

Q	uestio	Answer	Marks	Guidance	
8	(i)		M1	Show correct expansion for a 3×3 Cramer's rule is M2	
			M1	Correct expansion for any 2×2	
		$\Delta = 5a^2 + 7$	A1	Obtain correct answer	
		Determinant cannot = 0 , so A is non-singular	B1ft	Provided their determinant is always non-zero	
			[4]		
	(ii)		M1	Show correct method for finding cofactors	
		$\begin{pmatrix} 1 & a & -7 & 2a \\ 1 & 1 & 1 & 1 \end{pmatrix}$	A1	4 elements correct	
		$\begin{bmatrix} \frac{1}{4} \begin{pmatrix} 1 & 5a & 2 \\ -3 - 2a^2 & -a & a^2 + 1 \end{pmatrix}$	A1	All elements correct	
		$(-3-2a^2 -a a^2 + 1)$	B1ft	Divide by their determinant	
			[4]		
		/ 2a - 7 \	M1	Attempt to multiply their inverse by correct column vector in correct order	
		$ \frac{1}{\Delta} \begin{pmatrix} 2a - 7 \\ 5a + 2 \\ -6 - a - 4a^2 \end{pmatrix} $	A1ft	Obtain 1 correct answer, ft for missing or incorrect determinant or their A ⁻¹	
	(iii)	$-6 - a - 4a^2$	A1	Obtain other 2 correct answers a.e.f	
	(111)			GOMAIN SWIELD TO STANK WITH WITH THE STANK WITH THE	
			[3]		
	(:)	A is non singular a unique solution	B1	Any correct explanation $a \in A$ is non-singular or det $A \neq 0$	
	(iv)	A is non-singular → unique solution	DI	Any correct explanation e.g. A is non-singular or det $A \neq 0$	
			[1]		

uestion	Answer	Marks	Guidance
(i)	$M^2 - (m^2 m^2 + m)$	B1	3 elements correct
	1	B1	4 th element correct
	$M^3 = \begin{pmatrix} m^3 & m^3 + m^2 + m \end{pmatrix}$	B1	3 elements correct
	0 1	B1	4 th element correct
		[4]	
(ii)	$\mathbf{M}^{n} = \begin{pmatrix} m^{n} & m^{n} + m^{n-1} + \cdots + m \end{pmatrix}$	B1	3 elements correct
	1 1	B1	4 th element correct
		[2]	N.B. top right element could be $\sum_{r=1}^{n} m^{r}$ or factorised in (i) & (ii)
(iii)		B1	Clear statement that result is true when $n = 2$, allow $n = 3$ but not $n = 1$
	$\mathbf{M}^k \times \mathbf{M} = \begin{pmatrix} m^{k+1} & m^{k+1} + m^k + \cdots + m \end{pmatrix}$	M1	Attempt to multiply their \mathbf{M}^k by \mathbf{M} , either order, allow n for k
	1 1 1 1	A1	Clearly obtain correct answer
		B1	Complete statement of induction conclusion, dependent on 3/3 scored. Must include
		[4]	somewhere "true for $n = 2$ ", "true for n implies true for $n + 1$ ", "true for all n "
	(i) (ii)	(i) $\mathbf{M}^{2} = \begin{pmatrix} m^{2} & m^{2} + m \\ 0 & 1 \end{pmatrix}$ $\mathbf{M}^{3} = \begin{pmatrix} m^{3} & m^{3} + m^{2} + m \\ 0 & 1 \end{pmatrix}$ (ii) $\mathbf{M}^{n} = \begin{pmatrix} m^{n} & m^{n} + m^{n-1} + \dots + m \\ 0 & 1 \end{pmatrix}$	(i) $\mathbf{M}^2 = \begin{pmatrix} m^2 & m^2 + m \\ 0 & 1 \end{pmatrix}$ $\mathbf{M}^3 = \begin{pmatrix} m^3 & m^3 + m^2 + m \\ 0 & 1 \end{pmatrix}$ $\mathbf{B}1$

Mun. My Maths Cloud. Com

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

